
Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 1 Information subject to change without notice.

Table of Contents

1. Introduction ... 2

2. Network Connection ... 2

3. API Connection ... 2

4. API Requests ... 3

4.1 Command/Response Format .. 3

4.2 Unified Command Specification.. 4

4.2.1 Example .. 5

4.3 Common Commands .. 6

4.4 Class-Specific Commands ... 10

4.4.1 Infrared (IR) .. 10

4.4.2 Serial ... 16

4.4.3 Relays.. 18

4.4.4 Sensors ... 20

4.4.5 Matrix/Switch ... 22

Appendix A – Infrared Signaling and Codes ... 28

Appendix B – Serial To Network Bridging .. 31

Appendix C – Change Notification .. 32

Appendix D – Configurable Relays .. 33

5. API Errors ... 38

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 2 Information subject to change without notice.

1. INTRODUCTION

The Global Caché TCP API provides a simple yet powerful interface to the entire family of Global Caché products which are based

on a concept of network-connected devices having addressable modules and ports organized according by their functional class.

Each functional class has a common set of API commands for implementing its functionality, and these API commands are

compatible with any device in that class from any product family.

Our modular design approach provides significant benefits in flexibility and portability for API users. A single driver can be written

using common (to all products) API commands to discover Global Caché devices on a network and determine each device’s

available modules and ports, as well as their functional classes. Because class-specific commands are compatible across all

products, a single driver can be designed to work across all products.

This TCP API specification unifies and updates all information formerly provided in separate documents for each product line and

concisely presents one resource for all API information required by driver and application developers.

2. NETWORK CONNECTION

Global Caché network-connected products currently support network connectivity through Ethernet or WiFi, depending on

product line and model. By default, all devices are configured to automatically acquire their IP configuration via DHCP. However, if

a DHCP server is not available, devices will assume a default static IP address as specified in each device’s documentation.

Configuration of a device’s network and I/O settings can be managed through the product’s configuration web pages, or via API

commands if supported by the product (see get_NET and set_NET).

For detailed information about configuration and operation of the various products from a user perspective, please refer to each

product’s Quick Start or User Guide.

3. API CONNECTION

TCP API requests and responses are sent and received over raw TCP socket connection to port number 4998. Socket connections

can be momentary (send request, receive response, immediately disconnect) or persistent (keep a connection open for multiple

requests and/or responses). Each product line supports a maximum number of simultaneous open connections, as shown below.

Maximum Simultaneous TCP Connections
 GC-100 iTach Flex Global Connect

1 8 8 8

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 3 Information subject to change without notice.

4. API REQUESTS

4.1 COMMAND/RESPONSE FORMAT

TCP API requests follow a simple serialized command/response pattern wherein a command is sent by a network client to the

device and a response is sent by the device back to the network client.

Requests follow a consistent format comprised of a single line of printable text starting with a command name often followed by

comma-delimited parameter(s). Responses usually follow the same format, except in several cases where the response includes

multiple lines. Requests must end with a carriage-return, and responses always end with a carriage-return.

In the scope of this document, the format of a command and associated parameters is always specified as shown below.

 command,<module>:<port>,<parameter1>,<parameter2>,…,<parameterN>,[parameter]

Notes:

• A complete TCP API request consists of a single line of printable text ending with a carriage-return (ASCII value 13).

• Commands and parameters are case sensitive.

• A request begins with a unique command name, followed by a comma (if parameters are present) or carriage-return.

• Required parameters are represented by a unique string enclosed in angle brackets (<>).

• Optional parameters are represented by a unique string enclosed in square brackets ([]).

• Consecutive parameters are delimited by a comma (,).

• Parameter values are specified by the client (in the request) or returned by the device (in the response). In either case, a

parameter is always limited to a set of valid values. In this document, valid values are specified by explicit list, or by range. In

both cases a vertical bar is used in the notation as follows:

▪ In an explicit list to delimit values (for example, 1|3|7).

▪ In a range… to separate min. and max. values, with an ellipsis representing intermediate integer values (for example,

0|…|9).

The response to a request indicates success or error. The response may also return information such as settings or status.

The format of a success response usually echoes the command and parameters, as shown below. Note that the response name

typically excludes the command’s verb prefix, for example, the get_NET command which responds with NET.

 response,<module>:<port>,<parameter1>,<parameter2>,…,<parameterN>,[parameter]

The format of an error response varies across different product lines, but generally follows the format shown below.

 <error_prefix><error_code>

See the API Errors section for a complete list of error codes for each product line.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 4 Information subject to change without notice.

4.2 UNIFIED COMMAND SPECIFICATION

The TCP API is designed to be simple and consistent across all Global Caché product lines even though they each have unique

properties and capabilities. This provides application and driver developers the significant advantage of reliable compatibility and

reduced complexity across all products, thereby minimizing development and maintenance efforts.

This document presents a unified specification for TCP API commands for all Global Caché products. Unique or closely related

commands are presented in their own sections. Each section’s heading shows the command name(s) with a brief description,

followed by one or more paragraphs describing the purpose, function, and usage. Then, a command compatibility matrix specifies

the command/response, format, and parameters, as well as applicability, options, and other considerations relative to each Global

Caché product line.

The following subsection provides an example command specification section for a fictional command setexample. Before

proceeding to the actual command specifications, please review this example to gain an understanding of how API specification

information is presented in this document. Important details and aspects of the command specification are highlighted and

numbered with corresponding comments below the example section.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 5 Information subject to change without notice.

4.2.1 EXAMPLE

setexample – brief description

The setexample command performs an important function under certain conditions.

 Product Family
 GC-100 iTach Flex Global Connect

command setexample,<module>:<port>,<param1>,[param2] ✓

IP2IR
WF2IR ✓

✓

response example1,<module>:<port>,<param1>,[param2]

 example2,<module>:<port>,<param1>,[param2] ✓

parameters module module address 0|…|9 1 1 1

 port port/connector address 1|…|6 1|…|3 1 1|…|3
 param1 parameter1 description FLC-RS
 value1 value1 description ✓

 ✓* ✓

 value2 value2 description
✓ ✓ ✓*

 param2 parameter2 description value3
value4

value4
value5

examples

 GC-100-12

 setexample,3:4,value1,valueX↵

 iTach IP2IR

 setexample,1:2,value2↵

 example1,1:2,value2↵

 Flex

 setexample,1:1,value1,value3↵

 example1,1:2,value1,value3↵

 Global Connect

 setexample,1:3,value2,value5↵

 example2,1:2,value2,value5↵

1. Commands and responses are always a single line, ending with a carriage-return (unless specified otherwise). Some

commands may be shown on multiple lines due to length.

2. Some parameters have factory-default values. These are indicated in the table by an asterisk (*). (Refer to each product’s

User Guide or Quick Start Guide for details on resetting to factory-defaults.)

3. All GC-100 models support this command, but no response is returned.

4. For iTach, only the IP2IR and WF2IR models support the command and the example1 response.

5. All Flex and Global Connect models support this command.

6. iTach and Flex implement the example1 response, while Global Connect implements example2.

7. For GC-100, only value1 is supported for param1.

8. For iTach, only value2 is supported for param1.

9. For GC-100 and iTach, param2 is not supported.

10. For Flex, param1 is used only for the FLC-RS Cable.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 6 Information subject to change without notice.

4.3 COMMON COMMANDS

This section covers TCP API commands for functions common to all product lines, models, and module classes, including device

version, device capabilities, LED control, and network configuration.

getversion - get device version

The getversion command retrieves the device firmware version.

 Product Family
 GC-100 iTach Flex Global Connect

command getversion[,module] ✓ ✓ ✓ ✓

response version,<module>,<version> ✓
response <version> ✓ ✓ ✓

parameters module module address 0|…|9

version version number 3.2-06 (-06)
3.2-12 (-12)

 710-1005-XX (IP2IR)
 710-1009-XX (IP2SL)
 710-1008-XX (IP2CC)
 710-1001-XX (WF2IR)
 710-1007-XX (WF2SL)
 710-1010-XX (WF2CC)

710-2000-XX (-WF)
710-3000-XX (-IP)

710-4001-XX (IR)
710-4002-XX (SL)
710-4003-XX (RL)
710-4004-XX (SW)

examples
 GC-100-12

 getversion↵

 version,0,3.2-12↵

 Flex WiFi

 getversion↵

 710-2000-20↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 7 Information subject to change without notice.

getdevices - get device capabilities

The getdevices command is used to enumerate device capabilities. The response contains multiple lines, one line for each

module showing the module address, number of ports, and port type. This should provide enough information for applications to

determine the appropriate driver(s). Newer devices may also include a port subtype parameter in the response, which provides

additional information about the port type, but does not affect the driver determination.

The response always ends with a line containing only endlistdevices.

 Product Family
 GC-100 iTach Flex Global Connect

command getdevices

✓ ✓ ✓ ✓

response device,<module>,<ports>␣<type>[_subtype]

…
endlistdevices

✓ ✓ ✓ ✓

parameters module module address 1|…|5 0|…|1 11 0|…|1
 ports port count 1|…|3 0|…|3 12 0|…|6
 type port type
 ETHERNET ✓ ✓
 WIFI ✓ ✓
 MODULE ✓

 IR
✓ ✓ ✓ ✓

 SERIAL
✓ ✓ ✓ ✓

 RELAY
✓ ✓

✓

 SENSOR ✓
 RELAYSENSOR ✓
 IR_BLASTER ✓
 IRTRIPORT ✓
 IRTRIPORT_BLASTER ✓
 SWITCH ✓

 subtype port subtype ✓

 DIGITAL SENSOR3
 IN IR3
 OUT IR3
 RS232 SERIAL3
 RS485
 SPST_3A RELAY3
 HDMI_3:1 SWITCH3

1. For Flex, only module 1 is enumerated. This is a known bug which currently affects only the

Flex Link Relay & Sensor Cable (FLC-RS) where sensors are on module 2.

2. For Flex, ports is always 1. This is a known bug.

3. Specifies the type value(s) this subtype is associated with.

examples
 GC-100-12

 getdevices↵
 device,1,1 SERIAL↵
 device,2,1 SERIAL↵
 device,3,3 RELAY↵
 device,4,3 IR↵

 device,5,3 IR↵

 endlistdevices↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 8 Information subject to change without notice.

 iTach IP2IR

 getdevices↵
 device,0,0 ETHERNET↵
 device,1,3 IR↵
 endlistdevices↵

 Flex WiFi configured for Flex Link RS232 Serial Cable
 getdevices↵
 device,0,0 WIFI↵
 device,1,1 SERIAL↵
 endlistdevices↵

 Global Connect Relay 6-port
 getdevices↵
 device,0,0 MODULE↵
 device,1,6 RELAY_SPST_3A↵
 endlistdevices↵

blink - blink device LED

The blink command is used to enable or disable a continuous blink sequence on the power LED of the device.

 Product Family
 GC-100 iTach Flex Global Connect

command blink,<mode> ✓

response (no response) 1

parameters mode blink mode

 0 blink disabled ✓*

 1 blink enabled
✓

1. GC-100 sends no response to this command.

examples

 GC-100-12 - enable blink for power LED

 blink,1↵

 GC-100-12 - disable blink for power LED

 blink,0↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 9 Information subject to change without notice.

get_NET - get network configuration

set_NET - set network configuration

The get_NET and set_NET commands allow managing the network configuration, and locking of device settings.

 Product Family
 GC-100 iTach Flex Global Connect

command get_NET,<module>:<port> ✓ ✓ ✓ ✓

 set_NET,<module>:<port>,<cfglock>,
<IPconfig>,<IPaddr>,<subnet>,<gateway> ✓

1 1 1

response
NET,<module>:<port>,<cfglock>,
<IPconfig>,<IPaddr>,<subnet>,<gateway> ✓ ✓ ✓ ✓

parameters module module address 0 0 0 0

 port port/connector address 1 1 1 1

 cfglock configuration lock setting
 UNLOCKED ✓* ✓* ✓* ✓*
 LOCKED

✓ ✓ ✓ ✓

 IPconfig IP address assignment mode
 STATIC

✓ ✓ ✓ ✓

 DHCP ✓* ✓* ✓* ✓*
 IPaddr IPV4 address ✓ ✓ ✓ ✓

 subnet IPV4 subnet ✓ ✓ ✓ ✓

 gateway IPV4 gateway ✓ ✓ ✓ ✓

1. The set_NET command is not currently supported for iTach, Flex, or Global Connect.

examples

 Global Connect

 get_NET,0:1↵

 NET,0:1,UNLOCKED,DHCP,192.168.0.100,255.255.255.0,192.168.0.1↵

 GC-100-12

 set_NET,0:1,UNLOCKED,STATIC,192.168.0.50,255.255.255.0,192.168.0.1↵

 NET,0:1,UNLOCKED,STATIC,192.168.0.50,255.255.255.0,192.168.0.1↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 10 Information subject to change without notice.

4.4 CLASS-SPECIFIC COMMANDS

Global Caché products consist of one or more modules of different classes (types). Each of these module classes provides unique

functionality and capabilities with associated unique API commands. The following subsections describe the currently available

module classes and their available commands, including Infrared, Serial, Relay, Sensor, and Matrix/Switch classes.

4.4.1 INFRARED (IR)

The Global Caché Infrared (IR) module class includes the functions of IR Output (emitters and blasters), Sensor Inputs, and IR

Input/Receive.

get_IR - get IR port mode

set_IR - set IR port mode

The get_IR and set_IR commands manage the functional mode of IR ports.

 Product Family

 GC-100 iTach Flex
Global

Connect

command get_IR,<module>:<port>
-06, -12, -18 1 IP2IR, WF2IR 4 IR

 set_IR,<module>:<port>,<mode>

response IR,<module>:<port>,<mode>

parameters module module address 2|4|5 1 1 1

 port port/connector address 1|…|3 1|…|3 1 4 1|…|3
 mode port I/O mode
 IR Infrared emitter ✓* ✓*2 ✓ ✓*
 BL2_BLASTER Infrared blaster ✓
 IR_NOCARRIER Infrared envelope ✓
 IR_BLASTER Infrared blaster ✓*2,3 ✓ ✓3
 IRTRIPORT Flex Link 3 Emitter or Tri-port Cable ✓
 IRTRIPORT_BLASTER Flex Link 2 Emitter 1 Blaster Cable ✓*
 SENSOR Sensor, polled ✓ ✓ ✓ ✓

 SENSOR_NOTIFY Sensor, change-notification ✓ ✓ ✓ ✓

 SERIAL RS232 or RS485 serial ✓ ✓ ✓

 RECEIVER Infrared receiver ✓

 LED_LIGHTING
✓

1. GC-100 resets after a successful set_IR request.

2. iTach default is IR for ports 1 and 2, and IR_BLASTER for port 3.
3. For iTach and Global Connect, IR_BLASTER is supported only on port 3.
4. Unique to the Flex product line are its various fixed-function Flex Link

cables. The set_IR and get_IR commands set/get which of these Flex Link
cables is connected, but do not control the mode of individual ports. As
such, the port parameter has no effect (and must always be “1”).

examples

 Query setting for module 1, port 1
 get_IR,1:1↵
 IR,1:1,SENSOR↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 11 Information subject to change without notice.

 GC-100-12 - set IR module 4 port 2 to Sensor Input mode (no change notification)
 set_IR,4:2,SENSOR↵
 IR,4:2,SENSOR↵

 iTach - set port 3 to Blaster mode
 set_IR,1:3,BLASTER↵
 IR,1:3,BLASTER↵

 Flex - set Flex Link cable mode to Serial
 set_IR,1:1,SERIAL↵
 IR,1:3,SERIAL↵

 Global Connect - set port 1 to Sensor Input mode with change-notification
 set_IR,1:1,SENSOR_NOTIFY↵
 IR,1:1,SENSOR_NOTIFY↵

SENDING IR

Every IR device has IR codes associated with each of its functions. Each of the IR codes describes the timing and pattern of a

specific pulse-modulated waveform. The IR code defines the electrical waveform, which is output from an IR port, emitted as an IR

signal by an emitter or blaster, and finally received and interpreted by the IR device that triggers a function.

IR codes are typically represented and stored as text strings in various formats. IR codes for thousands of devices can be found in

Control Tower, Global Caché's IR database in the cloud. However, in exceptional cases where a device’s codes are not available in

the database, they can usually be learned using the handheld IR remote and a Global Caché IR learner (see get_IRL command).

For additional details and discussion about IR signal structure, IR code formats, and IR parameters, see Appendix A.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 12 Information subject to change without notice.

sendir - transmit IR code

The sendir command is used to transmit infrared signals for controlling various functions of an IR device.

Processing of a sendir request starts only after the entire request is received, including parameters, code, and carriage-return.

Then, if the requested port, format, and parameters are valid, the resulting action is determined by the current state of the

requested port, as follows:

State of Requested Port Action

idle begin IR code transmission and respond with completeir when complete

busy transmitting same IR code add or reset repeat value (see Smooth Continuous IR Repeat for more details)

busy transmitting different IR code respond with busyir

 Product Family

 GC-100 iTach Flex Global Connect

command

sendir,<module>:<port>,
<ID>,<freq>,<repeat>,<offset>,
<on1>,<off1>,<on2>,<off2>,…,<onN>,<offN>

-06, -12, -18 IP2IR, WF2IR
GC-IR-E, FLC-BL,
FLC-3E, FLC-T3,

FLC-2E1B
IR

response completeir,<module>:<port>,<ID>
 busyir

parameters module module address 2|4|5 1 1 1
 port port/connector address 1|…|3 1|…|3 1|…|3 1|…|3
 ID code ID 0|…|65535 0|…|65535 0|…|65535 0|…|65535
 Freq carrier frequency, Hz 20000|…|500000 15000|…|500000 15000|…|500000 15000|…|500000
 repeat repeat count 1|…|31 1|…|50 1|…|20 1|…|20
 offset preamble offset (if repeat > 1) 1|…|255 1|…|383 1|…|383 1|…|383
 onX pulse count 1|…|50000 1|…|50000 4|…|50000 4|…|50000
 offX gap count 1|…|50000 1|…|50000 4|…|50000 4|…|50000

examples

 sendir,1:1,123,40000,1,1,96,24,48,24,24,24,48,24,24,24,48,24,24,24,24,24,48,24,24,24,24,24,24,24,24,1035↵

 completeir,1:1,123↵

stopir - stop IR transmission

The stopir command is used to terminate an active IR transmission. This might be necessary, for example, if excessive repeats

were initiated and are actively transmitting, but are not desired.

For all products except GC-100, the exact stopir request string is echoed back in a response to the originator of the stopir

request.

If an IR transmission is active on the specified port it is immediately stopped, and the response is also sent to the originator of the

stopped IR request (if different from the originator of the stopir request).

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 13 Information subject to change without notice.

 Product Family
 GC-100 iTach Flex Global Connect

command stopir,<module>:<port> -06, -12, -18

IP2IR, WF2IR
GC-IR-E, FLC-BL,
FLC-3E, FLC-T3,

FLC-2E1B
IR

response stopir,<module>:<port>

parameters module module address 2|4|5 1 1 1
 port port/connector address 1|…|3 1|…|3 1|…|3 1|…|3

examples

 GC-100

 sendir,1:1,123,40000,10,1,96,24,48,24,24,24,48,24,24,24,48,24,24,24,24,24,48,24,24,24,24,24,24,24,24,1035↵
 stopir,1:1↵

 iTach, Flex, or Global Connect
 sendir,1:1,123,40000,10,1,96,24,48,24,24,24,48,24,24,24,48,24,24,24,24,24,48,24,24,24,24,24,24,24,24,1035↵

 stopir,1:1↵
 stopir,1:1↵

RECEIVING IR

Some devices provide the ability to receive IR signals. This functionality is available in two forms, each with specific characteristics

and purposes, as follows.

• IR Learner – Capable of receiving signals from an IR source within a very short distance (2.5 cm or less). It provides exceptional
accuracy and sensitivity specifically for the purpose of learning IR codes from handheld remotes for later (re)transmission
from an IR class module.

• IR Receiver – Capable of receiving signals from an IR source within a significant distance (up to 10 meters). It is not as accurate
as the IR Learner, but can be used for IR gateway functionality, allowing handheld remotes or other IR sources to control
other devices connected to the network. Note that this requires an application to process the received IR data and match
against a list of known IR codes.

The API commands associated with these two forms of receiving IR are specified and described below.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 14 Information subject to change without notice.

get_IRL - enable IR Learner

stop_IRL - disable IR Learner

The IR Learner is enabled by sending a get_IRL request.

While the IR learner is enabled, each complete received IR sequence is converted into a formatted IR code string and sent to the
client that originated the get_IRL command as an IR code string in Global Caché IR Format with module and port address
parameters fixed at a value of 1.

The IR learner remains enabled until the originating client sends a stop_IRL request, or the client connection is closed.

 Product Family

 GC-100 iTach Flex Global Connect

command get_IRL

✓ ✓ IR

response IR Learner Enabled

 <IR_code>
…

command stop_IRL

✓ ✓ IR

response IR Learner Disabled

✓ ✓

IR
parameters (see sendir command parameters)

examples

 get_IRL↵
 IR Learner Enabled↵
 (Aim handheld IR remote output to within 1” of Global Caché IR Learner, and press desired function button.)
 sendir,1:1,1,36429,1,1,95,34,15,17,15,17,15,34,15,33,47,34,15,17,15,17,15,17,15,2521↵

 stop_IRL↵

 IR Learner Disabled↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 15 Information subject to change without notice.

receiveIR - enable/disable IR input

The receiveIR command enables and disables IR receive mode on a supported port. Module and port address are required since

a module may have multiple ports that support IR receive. Since some ports support multiple operation modes a port must first

be configured for IR receive before IR receive mode can be enabled (see set_IR command).

While IR receive mode is enabled, any received IR signals are converted to a formatted IR code string and streamed to the client

that originated the receiveIR request in Global Caché IR Format*.

* Currently, the port address parameter is always 1. This will be corrected in a future release to reflect the actual port address the

IR code was received on.

IR receive mode remains enabled until the originating client disables IR receive mode or the connection is closed.

 Product Family
 GC-100 iTach Flex Global Connect

command receiveIR,<module>:<port>,<mode>

 IR

response receiveIR,<module>:<port>,<mode>

 <IR_code>
…

parameters module module address 1

 port port address 1|…|3
 mode IR receive mode
 enabled enable IR receive mode ✓

 disabled disable IR receive mode ✓

 IR_code IR code in Global Caché format ✓

examples

 Configure port 2 for IR receive and enable IR receive mode
 set_IR,1:2,RECEIVER↵
 IR,1:2,RECEIVER↵
 receiveIR,1:2,enabled↵
 receiveIR,1:2,enabled↵

 (Aim handheld remote at IR receiver and press a button.)
 sendir,1:1,1,36429,1,1,95,34,15,17,15,17,15,34,15,33,47,34,15,17,15,17,15,17,15,2521↵

 Disable IR receive mode on port 2
 receiveIR,1:2,disabled↵
 receiveIR,1:2,disabled↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 16 Information subject to change without notice.

4.4.2 SERIAL

The Global Caché Serial module class provides bidirectional transparent bridging between network and serial allowing any device

with a serial UART interface to be controlled and monitored from the network.

To utilize this functionality, the Serial module class is unique in that it provides a dedicated TCP socket server for each available

serial port. The socket server supports multiple simultaneous raw TCP connections, allowing multiple clients to achieve

bidirectional communication with the associated serial port. Data transfer is transparent (not interpreted or altered in any way).

TCP port numbers and maximum simultaneous connections per TCP port are shown below for each product line.

 GC-100-06
GC-100-12
GC-100-18

iTach Flex Global Connect

TCP port 4999 4999, 5000 4999 4999 4999

Maximum Connections 1 1 4* 8 8

* iTach multiport mode must be enabled in the configuration webpage Serial module settings.

To establish bidirectional direct communication with a device connected to the serial port, a network client simply opens a raw

TCP connection to the specified server port.

In applications where multiple clients may simultaneously communicate with the serial device, several important details and

constraints should be considered in order to achieve efficient and successful communications. Please see Appendix B for an in-

depth discussion of this topic.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 17 Information subject to change without notice.

get_SERIAL - get Serial port configuration

set_SERIAL - set Serial port configuration

The get_SERIAL and set_SERIAL commands are used to manage the configuration of a serial port.

 Product Family
 GC-100 iTach Flex Global Connect

command get_SERIAL,<module>:<port>

-06, -12, -18
IP2SL
WF2SL

FLC-SL-232
FLC-SL-MJ
FLC-SL-485

SL

 set_SERIAL,<module>:<port>,
<baudrate>,<flowcontrol/duplex>,<parity>,[stopbits]

response
SERIAL,<module>:<port>,
<baudrate>,<flowcontrol/duplex>,<parity>,[stopbits]

parameters module module address 1 | 2 1 1 1

 port port/connector address 1 1 1 1

 baudrate baud rate, bits per second 1 1 300|…|1152002 300|…|1152002

 1200 ✓ ✓

 2400 ✓ ✓

 4800 ✓ ✓

 9600 ✓ ✓

 14400 ✓

 19200 ✓* ✓* * *

 38400 ✓ ✓

 57600 ✓ ✓

 115200 ✓

 flowcontrol flow control mode
 FLC-SL-232
FLC-SL-MJ

FLOW_NONE
FLOW_HARDWARE

 ✓* ✓* ✓* ✓*

✓ ✓ ✓ ✓

 duplex duplex mode FLC-SL-485

DUPLEX_HALF
DUPLEX_FULL

 ✓

 ✓*

 parity parity bit mode

PARITY_NO
PARITY_ODD
PARITY_EVEN

 ✓* ✓* ✓* ✓*

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

 stopbits stopbit mode

STOPBITS_1
STOPBITS_2

 ✓* ✓* ✓* ✓*

✓ ✓ ✓ ✓

1. Only the indicated specific baud rate values are supported.
2. All baud rates in the specified range are supported.

examples

 GC-100-06 or iTach IP2SL
 get_SERIAL,1:1↵
 SERIAL,1:1,19200,FLOW_NONE,PARITY_NO↵

 set_SERIAL,1:1,38400,FLOW_HARDWARE,PARITY_EVEN↵
 SERIAL,1:1,38400,FLOW_HARDWARE,PARITY_EVEN↵

 Flex with Flex Link RS232 cable, or Global Connect Serial
 get_SERIAL,1:1
 SERIAL,1:1,115200,FLOW_NONE,PARITY_NO,STOPBITS_1↵

 set_SERIAL,1:1,9600,FLOW_HARDWARE,PARITY_EVEN,STOPBITS_2↵
 SERIAL,1:1,9600,FLOW_HARDWARE,PARITY_EVEN,STOPBITS_2↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 18 Information subject to change without notice.

4.4.3 RELAYS

The Global Caché Relay module class provides relay outputs that allow network-controlled dry contact-closure.

get_RELAY - get configurable relay type

set_RELAY - set configurable relay type

The get_RELAY and set_RELAY commands apply to Relay class modules having configurable relays and are used to read and

modify relay configuration. In the context of the API, a configurable relay is represented as logical relays which is an abstraction of

physical relay ports. To best understand this logical relay abstraction and the associated relay configurations and types, please

refer to the details in Appendix D.

Note: Configurable relays are currently available only on the Flex products when used with the Flex Link Relay & Sensor Cable.

 Product Family
 GC-100 iTach Flex Global Connect

command get_RELAY,<module>:<address>

FLC-RS

 set_RELAY,<module>:<address>,<type>

response RELAY,<module>:<port>,<type>

parameters module module address 1

 address logical relay address 1|…|4

 type1 relay type

 SPST Single Position, Single Throw ✓

 SPDT Single Position Double Throw
✓

 DPDT Double Position, Double Throw
✓

 Disabled Relay port disabled ✓*

 Unavailable2 Relay port in use ✓

1. Valid <type> values depend on the active relay configuration. See Appendix D

for detailed explanation on the required process for (re)configuring relays.
2. This is a response value only and cannot be used in the request.

examples

 Flex with Flex Link Relay & Sensor Cable - configure logical relay 1 as SPST
 get_RELAY,1:1↵ First, check port 1 to ensure it is Disabled)
 RELAY,1:1,Disabled↵
 set_RELAY,1:1,SPST↵
 RELAY,1:1,SPST↵

 Flex with Flex Link Relay & Sensor Cable - configure logical relay type 1 as SPDT
 set_RELAY,1:1,Disabled↵ (Set ports 1 and 2 to Disabled before reconfiguring to SPDT.)
 RELAY,1:1,Disabled↵
 set_RELAY,1:2,Disabled↵
 RELAY,1:2,Disabled↵
 set_RELAY,1:1,SPDT↵
 RELAY,1:1,SPDT↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 19 Information subject to change without notice.

getstate - get state of relay output

setstate - set state of relay output

The getstate and setstate commands are used to poll, monitor, and control the state of Relay module outputs.

The getstate command’s optional mode parameter supports the notify option which enables change notification upon any

state change for the specified port. See Appendix C for more details.

 Product Family
 GC-100 iTach Flex Global Connect

command getstate,<module>:<port>[,mode]

-12, -18 WF2CC, IP2CC FLC-RS RT
 setstate,<module>:<port>,<state>

response state,<module>:<port>,<state>

parameters module module address 3 1 1 1
 port port/connector address 1|…|3 1|…|3 1|…|4 1|…|6
 state1 relay state

 0 off (open) ✓* ✓* ✓* ✓*

 1 SPST - on (closed)
SPDT/DPDT - on1 (1st throw/position)

 ✓2 ✓2 ✓2,3 ✓2

 2 SPDT/DPDT - on2 (2nd throw/position)
✓

 mode optional get mode setting
 notify enable state change notification ✓

1. The state value (state of the relay) is not persistent through a device reset or power-cycle,

and thus always reverts to the default value (0/off/open) after a reset or power-cycle.

2. SPST - on (closed)
3. SPDT/DPDT - on1 (1st throw/position)

examples
 GC-100-12 - set relay port 2 = off (open):
 setstate,3:2,0↵
 state,3:2,0↵

 Flex - set logical relay port 3 (SPST) = on (closed):
 setstate,1:3,1↵
 state,1:3,1↵

 Flex - set logical relay port 1 (SPDT) = on2 (2nd
throw/position):

 setstate,1:1,2↵
 state,1:1,2↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 20 Information subject to change without notice.

4.4.4 SENSORS

The Global Caché Sensors module class provides bistate (digital) sensor inputs. The currently available products allow detection of

contact-closure and presence of voltage, current, or video.

getstate - get state of sensor input

The getstate command is used to poll and monitor the state of Sensor module input ports.

The getstate command’s optional mode parameter supports the notify option which enables change notification for any state

change for the specified port. See Appendix C for more details.

 Product Family
 GC-100 iTach Flex Global Connect

command getstate,<module>:<port>[,mode] -06, -12, -18 WF2IR, IP2IR FLC-RS IR

response state,<module>:<port>,<state>

parameters module module address 3|4 1 2 1

 port port/connector address 1|…|3 1|…|3 1|…|4 1|…|3
 state sensor state

 0 off (open) ✓ ✓ ✓ ✓

 1 on (closed) ✓ ✓ ✓ ✓

 mode optional get mode setting
 notify enable state change notification 1 ✓

1. GC-100 state change notification over TCP is supported via the statechange

response message. See Appendix C for additional details

examples
 GC-100-06 - get module 3 sensor port 2 state
 getstate,3:2↵
 state,3:2,1↵

 Flex - get sensor port 3 state
 getstate,2:3↵
 state,2:3,0↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 21 Information subject to change without notice.

SENSOR CHANGE NOTIFICATION

get_SENSORNOTIFY - get sensor-notify settings

set_SENSORNOTIFY - set sensor-notify settings

The set_SENSORNOTIFY command is available on some Sensor class modules. It allows control and configuration of the UDP and
TCP Change Notification features for sensor-inputs, if supported. For a detailed explanation of Change Notification, see
Appendix C.
 Product Family

 GC-100 iTach Flex Global Connect

command get_SENSORNOTIFY,<module>:<port>
 ✓ ✓

 set_SENSORNOTIFY,<module>:<port>,<n_port>,<n_interval>,[debounce]

response SENSORNOTIFY,<module>:<port>,<n_port>,<n_interval>,[debounce]
✓ ✓

parameters module module address 2 1

 port port/connector address 1|…|4 1|…|3
 n_port notify port
 0 all notifications disabled ✓ ✓

 1|…|65535 UDP port number ✓ ✓

 n_interval notify interval
 0 periodic notifications disabled ✓ ✓

 1|…|65535 time, seconds ✓ ✓

 debounce minimum duration of valid state 10us|…|1s1

1. The debounce field allows specifying time units in standard

abbreviated notations including “us”, “ms”, and “s”
(microseconds, milliseconds, and seconds, respectively). If
no units are specified, “s” is assumed. If no value is specified,
a default value of 100 ms is used.

examples

 Flex - disable all notification for sensor port 1:

 set_SENSORNOTIFY,1:2,0,0↵

 SENSORNOTIFY,1:2,0,0↵

 Flex - enable change notification for sensor port 2, at UDP port 12345:

 set_SENSORNOTIFY,1:2,12345,0↵

 SENSORNOTIFY,1:2,12345,0↵

 Global Connect - enable change notification and periodic notification for sensor port 1, at UDP port 54321

 set_SENSORNOTIFY,1:1,54321,10↵

 SENSORNOTIFY,1:1,12345,10,100ms↵

 Global Connect - enable change-notification for sensor port 1, at UDP port 12345, with debounce value of 500us.

 set_SENSORNOTIFY,1:1,12345,10,500us↵

 SENSORNOTIFY,1:1,12345,10,500us↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 22 Information subject to change without notice.

4.4.5 MATRIX/SWITCH

The Global Caché Matrix/Switch module class provides matrix signal switching. Current available products include a 3 input, 1

output HDMI switch with bidirectional CEC communication and active port detection.

getstate - get state of matrix switcher input-output selection

setstate - set state of matrix switcher input-output selection

The getstate and setstate commands are used to poll, monitor, and set the input/output selection state of the matrix

switcher.

Notes:

• Selecting an input/output disables the previous selected input/output.

• Disabling a selected input also disables the selected output (currently this occurs even if the input is already disabled, but

this is unintended and will be corrected in a future update).

• Disabling a selected output also disables the selected input.

The getstate command’s optional mode parameter supports the notify option which enables change notification for any state

change for the specified port. See Appendix C for more details.

 Product Family
 GC-100 iTach Flex Global Connect

command getstate,<module>:<in_port>[,mode]

HM

 setstate,<module>:<in_port>,<out_port>

response state,<module>:<in_port>,<state>

parameters module module address 1

 in_port input port address
 1|…|N input port address, where N = number of input ports 1|…|3
 0 disable the specified <out_port> 0*
 out_port output port address

 1|…|N output port address, where N = number of output ports 1
 0 disable the specified <in_port> 0*

 mode optional get mode setting

 notify enable state change notification ✓

examples

 Set input port 1 linked to output port 1
 setstate,1:1,1↵
 state,1:1,1↵

 Set input port 2 linked to output port 1
 setstate,1:2,1↵
 state,1:2,1↵

 Get input port 3 state
 getstate,1:3↵
 state,1:3,0↵ (input port 3 = disabled)

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 23 Information subject to change without notice.

getactive - get active state of matrix switcher ports

The getactive command is used to poll the active state of matrix switcher ports.

A port’s active state is determined by whether an active (powered on) HDMI device is connected to the port.

 Product Family
 GC-100 iTach Flex Global Connect

command getactive,<module>

 HM

response active,<module>
OUT:
<out_port1>,<state>
…
<out_portN>,<state>
IN:
<in_port1>,<state>
…
<in_portN>,<state>
endactive,<module>

parameters module module address 1

 state port state

 true active ✓

 false inactive ✓

 in_port input port address
 1|…|N input port address, where N = number of input ports 1|…|3
 out_port output port address
 1|…|N output port address, where N = number of output ports 1

examples

 getactive,1↵

active,1↵
OUT: ↵
1,true↵
IN: ↵
1,true↵
2,false↵
3,false↵
endactive,1↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 24 Information subject to change without notice.

HDMI CEC

CEC - send/receive HDMI CEC messages

The CEC command allows for network control, query, and monitoring of devices interconnected via the HDMI switch.

Note: Only devices connected to active/selected switch ports are accessible via CEC. In other words, a device connected to an

unselected switch input or output port is not connected to the CEC bus and cannot be accessed via CEC. For more information on

controlling switch port selection, see the Matrix/Switch class getstate and setstate commands.

The CEC command provides two modes of operation:

• TX - transmit mode allows control and query of HDMI devices.

• RX - receive mode allows monitoring messages sent and received by HDMI devices (including from the switch itself).

The behavior of the <acknowledge> parameter in the CEC command’s response depends on the type of CEC message:

• Unicast messages must be acknowledged (ACK’d) by the destination device. If successfully acknowledged, ACK is returned
as the <acknowledge> response parameter value. Up to two (2) retries are attempted. If not acknowledged after three (3)
total transmit attempts, “,!ACK” is returned as the <acknowledge> response parameter value, followed by a CEC transmit
error message (see API Errors).

• Broadcast messages (sent to logical address “F”) need not be ACK’d by receiving device(s) but may be NACK’d (rejected) by
receiving device(s). Any such NACK’d message will yield NACK returned as the <acknowledge> response parameter value.
If no NACK occurs, the broadcast message is considered accepted and successful, and no value is returned for the
<acknowledge> response parameter value.

Format specification and examples for the TX and RX operation modes are shown separately below.

 Product Family
 GC-100 iTach Flex Global Connect

command CEC,<module>:<out_port>,TX,<message>

 SW

response CEC,<module>:<out_port>,TX,<message>,<acknowledge>

parameters module module address 1

 out_port output port address 1
 message CEC message, colon-delimited ASCII hex bytes1
 <byte1>: ... :<byteN> byteX = ASCII hex, N <= 16 ✓
 acknowledge
 ACK unicast message acknowledged ✓

 !ACK unicast message not acknowledged ✓

 NACK broadcast message rejected ✓

 (none) 2 broadcast message accepted ✓

1. See Colon-Delimited Message Format for a detailed format

description.
2. No acknowledge value is shown for an accepted (not explicitly

rejected) broadcast message. However, currently an unintended
trailing comma is output. This will be corrected in a future firmware
update.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 25 Information subject to change without notice.

examples

 Playback 1 to TV – Image View On ... turns display on
 CEC,1:1,TX,40:04↵
 CEC,1:1,TX,40:04,ACK↵

 Playback 1 to TV – Image View On ... turns display on
 CEC,1:1,TX,40:04↵
 CEC,1:1,TX,40:04,ACK↵

 Failed (not ACK'd) unicast message

CEC,1:1,TX,40:04↵

 CEC,1:1,TX,40:04,!ACK↵
 CEC,1:1,TX,40:04,!ACK↵
 CEC,1:1,TX,40:04,!ACK↵
 ERR SW011↵

 Product Family
 GC-100 iTach Flex Global Connect

command CEC,<module>:<out_port>,RX,<enable>

HM

response CEC,<module>:<out_port>,RX,<message>,<acknowledge>

parameters module module address 1

 out_port output port address 1
 enable receive mode

enabled
on
1

enable monitoring of CEC messages ✓

disabled
off
0

disable monitoring of CEC messages ✓

 message CEC message, colon-delimited ASCII hex bytes1
 <byte1>: ... :<byteN> byteX = ASCII hex byte, N <= 16 ✓
 acknowledge
 ACK unicast message acknowledged ✓

 !ACK unicast message not acknowledged ✓

 NACK broadcast message rejected ✓

 (none) 2 broadcast message accepted ✓

1. See Colon-Delimited Message Format for a detailed format

description.
2. No acknowledge value is returned for an accepted (not explicitly

rejected) broadcast message. However, currently an unintended
trailing comma is output. This will be fixed in a future firmware
update.

examples
 Enable RX mode
 CEC,1:1,RX,1↵
 CEC,1:1,RX,enabled↵

 Observe successful (ACK'd) message
 CEC,1:1,RX,10:20:30:40,ACK↵

 Observe failed (not ACK'd) message
 CEC,1:1,RX,10:20:30:40,!ACK↵
 CEC,1:1,RX,10:20:30:40,!ACK↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 26 Information subject to change without notice.

 CEC,1:1,RX,10:20:30:40,!ACK↵

 Observe successful (not NACK'd) broadcast message
 CEC,1:1,RX,1F:20:30:40↵

 Observe failed (NACK'd) broadcast message
 CEC,1:1,RX,10:20:30:40,!ACK↵
 CEC,1:1,RX,10:20:30:40,!ACK↵

CEC COLON-DELIMITED MESSAGE FORMAT

The <message> parameter of the CEC request/response is formatted as a sequence of colon-delimited hexadecimal byte values

which represent the actual transmitted or received CEC message.

The first byte of the message indicates the logical address of the source and destination devices. The second byte indicates the

opcode/command. The remaining bytes (if necessitated by the opcode) are the message data.

Below is an example CEC command, sent from the Playback 1 device to the TV, to display the string “GC!” on the TV:

(A complete list of CEC commands can be found in the latest CEC specification document.)

The CEC logical addresses are listed below. These addresses are for use in the source and destination address in the CEC message.

Logical addresses are represented by hexadecimal characters. CEC devices negotiate a logical address in a process described in the

CEC specification.

Address Device

 0 (0x0) TV

 1 (0x1) Recording Device 1

 2 (0x2) Recording Device 2

 3 (0x3) Tuner 1

 4 (0x4) Playback Device 1

 5 (0x5) Audio System

 6 (0x6) Tuner 2

 7 (0x7) Tuner 3

 8 (0x8) Playback Device 2

 9 (0x9) Recording Device 3

10 (0xA) Tuner 4

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 27 Information subject to change without notice.

11 (0xB) Playback Device 3

12 (0xC) Reserved

13 (0xD) Reserved

14 (0xE) Free Use

15 (0xF)
Unregistered (as source address)

Broadcast (as destination address)

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 28 Information subject to change without notice.

APPENDIX A – INFRARED SIGNALING AND CODES

IR SIGNALING

IR transmissions are created by sending a pattern of timed pulses modulated on a specific carrier frequency (ƒ). This pattern of
pulses is comprised of a series of <on> and <off> states, where the carrier frequency (ƒ) is present during the <on> state, and
absent during the <off> state (also sometimes called the gap state). The carrier frequency is typically between 35 to 45 kHz, but
in exceptional cases can reach 500kHz.

The duration of each <on> and <off> state is represented as a pair of pulse count values, sometimes called a pulse pair. A pulse
count value is the count of carrier frequency periods that elapses during the <on> or <off> state. For example, an <off> value
(pulse count) of 24 modulated on a carrier frequency of 40 kHz results in a duration of 600μS, as calculated below.

 period = 1/ƒ = 1/40 kHz = 1/40000 = 0.000025 seconds = 25μs

<off> value = 24 pulses, so <off> duration = 24 × 25μs = 600μs

Figure A-1 shows an example IR sequence of “4,5,6,5” with corresponding waveform illustrating the <on> and <off> patterns.

Figure A-1

IR sequences typically end with a relatively large <off> value. This serves as a resting or gap state which allows the receiving

device to detect the end of the IR sequence and thereby distinguish it from any subsequent IR signal it may receive.

GLOBAL CACHÉ IR FORMAT

Global Caché’s IR code format and parameters are described in detail below.

sendir,<module>:<port>,<ID>,<freq>,<repeat>,<offset>,<on1>,<off1>,<on2>,<off2>,…,<onN>,<offN>

<module> - module address
The module parameter specifies the address of the module which contains the target IR output port.

<port> - port address
The port parameter specifies the address of the target IR output port.

<ID> - ID number
The ID parameter is an arbitrary number assigned by the requester. It is included in the completeir response when the IR transmit
is successfully completed. Applications can use this to identify when a particular IR code has completed.

<freq> - IR carrier frequency, Hz
The frequency parameter specifies the carrier frequency of the IR waveform. See the IR Signaling section for additional details.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 29 Information subject to change without notice.

<repeat> - repeat count
The repeat parameter defines the number of times to transmit the IR code. Although this value is set by the initial request, it can
be affected during IR transmission in the following two ways.

• A stopir command unconditionally terminates an active IR transmission.

• An identical IR request received while the same IR code is already transmitting results in the original request’s repeats being
increased by the specified repeat value, or reset to the specified repeat value (see Smooth Continuous IR Repeat).

<offset> - preamble offset
The offset parameter is used only if the repeat value is greater than 1. If the IR code includes a preamble, the offset value defines
the preamble by indicating the offset into the pulse-count sequence where a repeat starts. The offset value must always be an
odd value, since an IR sequence must begin at the start of a pulse-pair. The following table shows the relationship between offset
value and repeat start location (when repeat value is > 1).

<offset>

(always odd)
<repeat>

starts at:

1 <on1> (no preamble)

3 <on2>

… …

N-1 <on((N/2)-1)> N = total number
of pulse-pairs

<on1> - first on pulse count
The on parameter specifies the number of output pulses, that is the number of periods of the carrier frequency. See the IR
Signaling section for additional details.

<off1> - first offpulse count
The off parameter specifies the duration of the gap (absence of pulses) by the number of periods of the carrier frequency. See the
IR Signaling section for additional details.

<onN> and <offN> - the final pulse count values, where N = the number of pulse pairs.
Note: There must be an equal number of <on> and <off> states. Also, every <on> and <off> state must meet an 80μS minimum
duration requirement.

Example: With a carrier frequency of 60 kHz, the minimum value for <on> and <off> states can be calculated, as shown below.

<off>min = <on>min ≥ 80μS × ƒ = 80μS × 60 KHz = 4.8 pulses

For accurate reproduction of an IR code at 60 kHz, all <on> and <off> pulse-counts in the timing pattern must be 5 or higher.

All the above conditions above must be satisfied for the IR code to be valid. If a variable is missing or out of range, an error will be

returned.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 30 Information subject to change without notice.

GLOBAL CACHÉ COMPRESSED IR FORMAT

The compressed IR format is based on a technique of replacing up to 15 unique <on> and <off> pulse-pairs with a single

uppercase alphanumeric character (e.g., A, B, C,…). The first time a unique pulse-pair occurs in the IR command, it is assigned a

single alphanumeric character. Any subsequent occurrences of that same pulse-pair are then replaced with that assigned

character. This allows the sendir request to be significantly compressed in length, which is advantageous in some cases,

especially for very long IR codes.

Example IR code in standard Global Caché IR format:

sendir,1:1,123,40000,1,1,4,5,4,5,8,9,4,5,8,9,8,9↵

To convert to Global Caché Compressed format, we first find each unique pulse-pair (highlighted in blue).

sendir,1:1,123,40000,1,1,4,5,4,5,8,9,4,5,8,9,8,9↵

We then assign a single uppercase alphanumeric character to each unique pulse-pair. In this example, A is assigned to 4,5,

and B is assigned to 8,9,. We then replace all subsequent occurrences of each unique pulse-pair (including commas) with its

associated assigned alphanumeric character. This yields the resulting Global Caché Compressed format code as follows:

sendir,1:1,2445,40000,1,1,4,5A8,9ABB↵

Note: The above example IR code yields a minor reduction in length when converted to Global Caché Compressed format.

However, typical IR codes are much longer, and thus the reduction in code length is more significant.

SMOOTH CONTINUOUS IR REPEAT

Smooth Continuous IR Repeat is a feature which provides smooth sustained control functions (for example, volume control,

channel up/down) without hesitations or intermittent response at the controlled device. This feature is supported on iTach and

Flex. Support will be added for Global Connect in a future release (currently, Global Connect adds repeat values).

One approach to executing repeated IR functions is the scenario where a control application sends a sendir request with very

large repeat count, then later terminates the request with a stopir request. However, this can result in uncontrolled behavior.

For example, consider the user pressing and holding the Volume Up button. The control application sends a request with a very

large repeat count, then waits for the user to release the button (at which time a stopir request will be sent to stop the original

request). Suppose the control application’s network connection is temporarily interrupted or unexpectedly closed while the user

is holding the button. The IR code may continue repeating before the control application is able to reconnect and send a stopir

command, resulting in a runaway scenario where the volume increases uncontrollably, possibly causing equipment damage.

To avoid the runaway scenario, the Global Caché device actively manages and limits the repeat count. This simply requires that

the client choose an optimally minimal repeat value, and periodically (re)send the same IR request as long as the repeating

function is asserted by the user (e.g., user is holding a button on a remote). Each time the repeated IR request is received by the

Global Caché device, it resets the repeat count to the original requested value and continues transmitting the IR code. In this way,

if the client connection is unexpectedly interrupted or disconnected, the IR code transmission stops after completing a minimal

number of repeats, thereby mitigating the runaway scenario.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 31 Information subject to change without notice.

Example: The user presses and holds the Volume Up button. The control application responds by sending an IR request with

repeat = 5. After a short delay, the control application detects the user is still holding the Volume Up button and resends the exact

same IR request. At that moment, the IR code has completed three (3) repeats of the IR transmission, with two (2) remaining. But

since the same IR request was received again, the repeat count is reset back to five (5), and the IR code transmission continues.

This process continues indefinitely while the user holds the button, providing a smooth response at the controlled device.

However, the command will repeat no more than five (5) times after the button is released, or after the client connection is

unexpectedly interrupted or disconnected.

If each repeat IR request is received before the current request’s repeats have completed transmitting, smooth operation is

achieved at the controlled device. Ideally, the requested function (for example, Volume Up) should stop executing as soon as

possible after the user stops pressing the button. This optimal (smallest) repeat value can be determined in part by considering

the time required for request to be sent by the application/client on the network, any potential network latencies, and the time

required to complete one transmission of the IR code. If the repeat value is too small, the IR request may complete before the

next repeat request is sent and received, which introduces a small delay before the next repeat command is sent, which may

cause occasional or continuous hesitations (observed at the controlled device) while the user holds the button.

APPENDIX B – SERIAL TO NETWORK BRIDGING

The Serial module class allows multiple network clients to simultaneously send and receive data to and from a single serial device.

This is a complex process which must be carefully managed to maintain integrity of the communications between each network

client and the serial device. The following sections describe this process for both directions of data transfer between the network

and the serial device.

SENDING DATA TO A SERIAL DEVICE

The Serial module class achieves the functionality of multiple clients transmitting to a single serial device by carefully managing

incoming network data according to the order and timing of received network packets, then transmitting that same data to the

serial device in specifically managed and timed serial packets.

Consider a case where two TCP clients are connected to a Serial module, and each simultaneously send a command string for

transmission to the connected serial device. TCP client A sends its command/data in two (2) separate network packets, while TCP

client B sends its command/data in a single network packet. In this case, since TCP client A sent two (2) separate packets, it is

entirely possible that the command/data from TCP client B is received and transmitted to the serial device in between the two (2)

network packets sent by TCP client A. The resulting data transmitted to the serial device would then be an undefined combination

of both commands/data, and very likely invalid.

This example illustrates why it is important for TCP clients to send complete command/data within a single network packet

whenever possible. This ensures the command/data is received as complete and intact by the connected serial device.

RECEIVING DATA FROM A SERIAL DEVICE

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 32 Information subject to change without notice.

The serial module achieves transmission of incoming serial data to multiple network clients by packetizing the incoming serial data

according to timing and size.

Starting from an idle state, the first character received to the serial port marks the beginning of the incoming serial packet.
Additional incoming serial data is added to the packet until one of the following conditions occurs:

a.) The serial receive buffer reaches near-full capacity.

b.) A time threshold (based on current baud rate) elapses with no characters being received.

If either of the above conditions are satisfied, the packet is considered complete, and it is immediately transmitted to all
connected network clients.

APPENDIX C – CHANGE NOTIFICATION

The Change Notification feature is available on various module class I/O ports. It provides real-time streaming notification of port

state changes.

A change notification message is simple and concise, indicating the module, port, and new state, as follows:

<state_response>,<module>:<port>,<state>

Delivery of change notification messages is achieved through several mechanisms based on different network protocols

(depending on product line), including UDP multicast and TCP. These are discussed in the following subsections.

UDP

UDP change notification utilizes the Internet Group Management Protocol (IGMP) to send a multicast UDP message when an I/O

port changes state, and/or at a configured time interval. This feature is supported on all products for Sensor class modules only.

The format of the notification message follows exactly the Sensor class getstate command response.

Several configurable options are available which allow customization to accommodate various applications and environments. The

following options are individually configurable for each port.

• Notify Port – destination port number for change notification messages.

• Notify Interval – time interval for periodic update messages, in seconds.

When selecting UDP port values, it is advisable to avoid conflicts with ports already in use in the network environment. Please
consider all connected network hardware, and refer to various available standards registries (such as the IANA Service Name and
Transport Protocol Port Number Registry) for a list of assigned vs. available port numbers. For example, according to the IANA
registry, UDP ports 9132 - 9159 are unassigned and could be a good choice if not already used locally by other network devices.

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 33 Information subject to change without notice.

TCP

GC-100 and Global Connect products support TCP change notification which provides real-time streaming notifications of I/O port

state changes, delivered through a standard TCP API connection.

GC-100 change notification is supported only for Sensor class modules and must be enabled through the web configuration for the

associated IR and sensors module. Selecting the Sensor with Auto-notify option for a port enables change notification mode for

that port and any state change on that port results in a message being sent to any connected client(s) in the format shown below.

(See the Sensor class getstate command for parameter descriptions.)

statechange,<module>:<port>,<state>

Global Connect change notification messages are enabled and delivered within the context of each client’s TCP connection. Any

client can request change notifications for any available I/O port (in a getstate request, with the optional mode parameter and

the notify option). Multiple requests for any port can be active on one or more TCP connections. An enabled notification

persists for the life of the TCP connection of the client that enabled the notification. Thus, any termination of a TCP connection

terminates all active change notifications enabled for that connection but does not affect change notifications enabled in other

client connections. The format of the notification message follows exactly the getstate command response for the associated

module class.

DEBOUNCE

Some module classes support a debounce feature for I/O port state changes.

The debounce setting can be configured for each port. It establishes the minimum state duration required to trigger a change

notification for that port. Thus, if a port state change occurs at a frequency which results in the duration of the port’s state being

less than the debounce value then the state change is ignored, and no change notification occurs. Conversely, if a port state

change occurs and the new state persists for a duration greater than the debounce value, a change notification does occur.

APPENDIX D – CONFIGURABLE RELAYS

Some Relay class modules provide configurable relay functionality which supports various combinations of SPST, SPDT, or DPDT

relay types. This configurability is accomplished via hardware jumpers and network API commands. Hardware jumper

specifications for supported relay types can be found in the User Guide or Tech Guide for the configurable relay product. Software

configuration, control, and monitoring of relay outputs is achieved via the TCP API commands specified in Section 4.4.3.

The purpose of the following subsections is to explain the concepts of physical relay ports and logical relays pertaining to

configurable relays.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 34 Information subject to change without notice.

PHYSICAL PORTS VS. LOGICAL RELAYS

To understand configurable relays, a clarification must be made regarding the concepts of physical relay ports and logical relays.

Physical relay ports are the actual hardware relay outputs which are implemented by electromechanical relays. It is best to think

of physical relay ports as not directly accessible or controllable via API commands, but instead as the underlying foundation for

the abstracted logical relays which are configured, accessed, and controlled via API commands. Figure D-1 shows a visual

representation of physical relay ports for an example Relay class module having four (4) relay outputs.

Figure D-1

Logical relays are an abstraction of the physical relay ports. Logical relays provide configurable capability to function as various

relay types (SPST, SPDT, or DPDT). These relay types utilize one or more physical relay ports to achieve their functionality.

Key points to consider about logical relay abstraction are as follows:

1. Number of physical relay ports utilized by various logical relay types (referred to as the footprint).

2. Valid mappings (positions) for various logical relay types.

3. Address of valid logical relay mappings (for use in API commands).

The above points are visualized in the following Figure D-2 and Figure D-3.

Figure D-2

Figure D-2 illustrates the number of physical relay ports occupied by various logical relay types (often referred to as the footprint)

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 35 Information subject to change without notice.

Figure D-3

Figure D-3 displays valid positions and addresses for various logical relay footprints juxtaposed against the underlying physical

relay ports. Notice that logical relays always occupy one, two, or four (1, 2, or 4) physical relay ports. Also notice that logical relays

occupying more than one (1) physical relay port are always combined in multiples of two (2), and are always aligned at an odd

address.

LOGICAL RELAY TYPES

The relay types supported by Relay class modules with configurable relays are specified in the following table with description and

footprint (number of physical relay ports utilized).

Relay type Description Footprint

SPST Single Position Single Throw 1

SPDT Single Position Double Throw 2

DPDT Double Position Double Throw 4

CONFIGURING LOGICAL RELAYS

Configuration of logical relays is accomplished with the get_RELAY and set_RELAY commands. Specifications for these

commands and associated parameters can be found in Section 4.4.3.

Figure D-4 illustrates several examples of valid logical relay configurations for a Relay class module with 4 physical ports. Note this

is not an exhaustive list of all possible configurations.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 36 Information subject to change without notice.

Figure D-4

In Figure D-4, logical relays are shown as yellow or gray rectangles containing the name of the relay type. The small blue number

in the top-left corner indicates the logical relay’s address, which is always the lowest port number of the ports occupied by the

logical relay. Respectively, these two values are the <type> and <address> parameters to be used with the API commands

get_RELAY and set_RELAY for configuration of the logical relays.

Also notice in Figure D-4 some logical relays have a Disabled type. This represents the unconfigured state. It is the default

setting at power-on or reset. More importantly, it is a prerequisite setting when changing the configuration of logical relays,

described as follows.

When (re)configuring logical relays, the following order of steps must be taken:

1. Set all ports utilized by the desired logical relay to type Disabled.

2. Configure hardware jumpers for the desired relay type (see the User or Tech Guide for the product being used).

3. Connect external wiring from the relay terminals to the devices being controlled.

This requirement to first set relay ports to Disabled is meant to ensure that affected ports are in a known inactive state before
being (re)configured. This safely allows requisite changes to hardware jumpers and external device connections, thereby ensuring
known conditions when the new logical relay configuration is applied.

When attempting to apply a logical relay setting via the API, if all affected ports are not set to Disabled, no change will be
applied, and an error will be returned.

As previously shown, logical relays occupying multiple ports are addressed at the lowest numbered port they occupy. When
querying any other occupied ports’ type with the get_RELAY command, an Unavailable response value will be returned. If an
attempt is made to directly change the configuration of such port(s), or an attempt is made to set or get the state of such port(s),
an error will be returned.

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 37 Information subject to change without notice.

Following is an example request/response sequence to change logical relay port 3 type from SPST to DPDT:

get_RELAY,1:3↵ Query the current configuration for logical relay port 3.

RELAY,1:3,SPST↵

set_RELAY,1:3,Disabled↵ Set logical relay port 3 to Disabled to allow making necessary

RELAY,1:3,Disabled↵ changes to hardware jumpers and external device connections.

set_RELAY,1:3,DPDT↵ Finally, set logical relay port 3 to DPDT type.

RELAY,1:3,DPDT↵

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 38 Information subject to change without notice.

5. API ERRORS

The TCP API error response is generated for a variety of reasons, including but not limited to errors such as invalid or unknown

command, invalid syntax or format, invalid parameter value (unknown, out of range, excess length), or unsupported setting.

The format of the TCP API error response is shown below:

<error_prefix><error_code>

The following table specifies the error formats and the error code descriptions and values for all Global Caché product families.

Errors are grouped according to those common to all module classes, and those specific to each module class.

 Product Family
 GC-100 iTach Flex Global Connect

<error_prefix> unknowncommand␣ ERR_<module>:<port>, ERR␣ ERR␣

<error_code>

 Common

 invalid command (timeout) 1
 invalid command (unknown) 14 001 001 001
 invalid command syntax 002 002
 invalid module address 3 002 003 003
 invalid port address 4 003 003 003
 no carriage return 12 016 004 004
 not supported 005 005
 invalid parameter 023
 settings locked 027
 Internal 007

 Infrared

 invalid port mode 014
 invalid ID 004 IR001 IR001
 invalid frequency 005 IR002 IR002
 invalid repeat 006 IR003 IR003
 Invalid offset 8 007 IR004 IR004
 invalid pulsecount 008 IR005 IR005
 uneven pulsecounts 10 010 IR006 IR006
 code too long 15 020 IR007
 output port busy IR008
 not an IR port 21
 input port busy (IR receive) IR020
 input port overflow (IR receive) IR021

 Serial

 invalid baud rate SL001 SL001
 invalid flow control SL002 SL002
 invalid parity value SL003 SL003
 invalid stop bits value SL004 SL004
 invalid duplex value SL006 SL006

Global Caché Unified TCP API
Version 1.1

Global Caché Unified TCP API Global Caché

Effective: June 9, 2020 160 East California Street, PO Box 1659

PN: 200113-01 v.1.1 Jacksonville, Oregon 97530

www.globalcache.com Phone: 541-899-4800

Page 39 Information subject to change without notice.

 invalid gender SL007

 Relays

 invalid logical relay type RO001 RO001
 invalid logical relay state RO002 RO002
 unsupported operation 11 RO003 RO003
 logical relay disabled/unavailable RO004 RO004

 Sensors

 not a sensor or relay 13 018
 sensor-input cannot send IR 5,6,7
 invalid sensor notify port value SI002 SI002
 invalid sensor notify time value SI003 SI003
 sensor not available SI001 SI001

 Matrix/Switch

 invalid input-output selection SW001
 HDMI - CEC frame too large SW010
 HDMI - CEC transmit error SW011

Examples

 GC-100-12: Query IR mode of a non-IR module/port.
 get_IR,3:1↵
 unknowncommand 21↵

 iTach IP2IR/WF2IR: Set Blaster mode on a port that does not support blaster.
 set_IR,1:1,IR_BLASTER↵
 ERR_1:1,014↵

 iTach all models: Send a request without a carriage-return.
 getversion
 ERR_0:0,016↵

 Flex with Flex Link RS232 Cable (FLC-232): Set an invalid baud rate.
 set_SERIAL,1:1,250,FLOW_NONE,PARITY_NO,STOPBITS_1↵
 ERR SL001↵

 Global Connect relays: Set an invalid port state.
 setstate,1:6,2↵
 ERR RO002↵

	1. Introduction
	2. Network Connection
	3. API Connection
	4. API Requests
	4.1 Command/Response Format
	4.2 Unified Command Specification
	4.2.1 Example
	setexample – brief description

	4.3 Common Commands
	getversion - get device version
	getdevices - get device capabilities
	blink - blink device LED
	get_NET - get network configuration
	set_NET - set network configuration

	4.4 Class-Specific Commands
	4.4.1 Infrared (IR)
	get_IR - get IR port mode
	set_IR - set IR port mode
	Sending IR
	sendir - transmit IR code
	stopir - stop IR transmission

	Receiving IR
	get_IRL - enable IR Learner
	stop_IRL - disable IR Learner
	receiveIR - enable/disable IR input

	4.4.2 Serial
	get_SERIAL - get Serial port configuration
	set_SERIAL - set Serial port configuration

	4.4.3 Relays
	get_RELAY - get configurable relay type
	set_RELAY - set configurable relay type
	getstate - get state of relay output
	setstate - set state of relay output

	4.4.4 Sensors
	getstate - get state of sensor input
	Sensor Change Notification
	get_SENSORNOTIFY - get sensor-notify settings
	set_SENSORNOTIFY - set sensor-notify settings

	4.4.5 Matrix/Switch
	getstate - get state of matrix switcher input-output selection
	setstate - set state of matrix switcher input-output selection
	getactive - get active state of matrix switcher ports
	HDMI CEC
	CEC - send/receive HDMI CEC messages
	CEC Colon-Delimited Message Format

	Appendix A – Infrared Signaling and Codes
	IR Signaling
	Global Caché IR Format
	Global Caché Compressed IR Format
	Smooth Continuous IR Repeat

	Appendix B – Serial To Network Bridging
	Sending Data To A Serial Device
	Receiving Data From A Serial Device

	Appendix C – Change Notification
	UDP
	TCP
	Debounce

	Appendix D – Configurable Relays
	Physical Ports vs. Logical Relays
	Logical Relay Types
	Configuring Logical Relays

	5. API Errors

